
How I Learned to Stop Worrying and Love RetrainingMax Zimmer, Christoph Spiegel, Sebastian Pokutta
Cooperation: TU Berlin, ZIBFunding: Math+

How I Learned to Stop Worrying and Love RetrainingMax Zimmer, Christoph Spiegel, Sebastian Pokutta
Cooperation: TU Berlin, ZIBFunding: Math+

Neural Network Pruning
Neural Network Pruning approaches remove weights from the network, inducing sparsity in the corresponding tensors. The resulting sparsemodels require less storage and FLOPS at inference, while maintaining similar performance to the over-parameterized densemodel. Two mainparadigms have emerged for training dense models from scratch towards sparsity:
� Prune-during-training approaches: Find (almost) sparse model at the end of training–Are pruning-stable: The final ‘hard’ pruning step results in negligible accuracy loss, eliminating the need for retraining.– Require strong implicit bias towards sparsity (e.g., gradual pruning, regularization techniques).
� Prune-after-training approaches: Prune following standard training for T epochs, retrain for Trt to compensate for losses.–Are pruning-instable: Most of the performance is lost at pruning and needs to be recovered during retraining.– Example: Iterative Magnitude Pruning (IMP) (Han et al., 2015): Iteratively remove low-magnitude weights and retrain.
� Focus of our work: The retraining phase of IMP and optimal learning rate schedules.

Our contributions
IMP is simple and easy to implement, however it is often claimed to be inferior to pruning-stable approaches:
� It is computationally inefficient since it requires many expensive prune-retrain cycles. Pruning-stable approaches find a sparse solutionthroughout regular training.
� It achieves sub-optimal states since it employs ‘hard’ pruning instead of ‘learning’ the sparsity pattern throughout training.

We challenge these commonly held beliefs by rethinking the retraining phase in the context of Budgeted Training (Li et al., 2020), i.e., thesetting of training networks under a fixed iteration budget.
Our major contributions:
1.We demonstrate that the findings of Li et al. (2020) on Budgeted Training apply to IMP’s retraining phase, providing further insights into theresults presented by Renda et al. (2020) and Le and Hua (2021). We show that a simple linear learning rate schedule can significantly reduceIMP’s runtime without sacrificing model performance.
2.We propose Adaptive Linear Learning Rate Restarting (ALLR), a novel method for selecting the initial value of the linear schedule withoutadditional hyperparameter tuning. This approach considers both pruning effects and retraining time, outperforming previous retrainingschedules across various learning tasks.
3. By integrating the initial dense training phase into the same budgeted training scheme, we develop Budgeted IMP (BIMP), a simple yeteffective method that outperforms many pruning-stable approaches under the same number of training iterations.

Retraining schedules
Consider the learning rate schedule (ηt)t≤T of the original training and let Trt be the number of retraining epochs. Existing schedules:
� FT (Han et al., 2015): Use last learning rate ηT for all epochs.
� LRW (Renda et al., 2020): Rewind learning rate to epoch T −Trt.

� SLR (Le and Hua, 2021): Proportional to the original schedule.
� CLR (Le and Hua, 2021): 1-cycle cosine decay schedule.

The empirical insights concerning Budgeted Training (Li et al., 2020) closely resemble the development and improvement of retraining sched-ules in the pruning context. We claim that retraining should first and foremost be considered under the aspect of Budgeted Training and thatlessons derived in the latter, such as the budget-optimality of a linearly decaying schedule, are generally applicable in this context.
We propose the following schedules for each prune-retrain-cycle:
� Linear Learning Rate Restarting (LLR): Linear decay from η1 to zero after a short warm-up phase.
� Adaptive Linear Learning Rate Restarting (ALLR): LLR, but discount the initial value η1 by d ∈ [0,1] to account for the available retrainingtime and the performance drop induced by pruning.ALLR calculates the relative L2-norm change between the weight vector θ and its pruned version θ p after pruning a fraction s ∈ (0,1] of θ :

d1 =
∥θ −θ p∥2

∥θ∥2 ·
√

s
∈ [0,1], (1)

where normalization by√s allows d1 to attain the full range of values in [0,1]. We then compute d2 = Trt/T to consider the retrain phase lengthand choose d ·η1 as the initial learning rate for ALLR, with d = max(d1,d2).

Budgeting the retraining phase I
Figure 1: Envelope of IMPwithALLR for ResNet-56 onCIFAR-10when treat-ing the number of prune-retrain cycles and their individual length as hy-perparameters. IMP is capable of achieving what has previously been con-sidered its full potential with significantly less than the total number of re-training epochs budgeted for its iterative form: the baseline of Renda et al.(2020) requiring 2000, 2800, and 3600 epochs for sparsities 90%, 95% and98%, respectively, is met after around 100 epochs of retraining.

0 50 100 150 200 250 300

total retraining epochs

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

te
st

a
cc

u
ra

cy
d

ev
ia

ti
o
n

Baseline (Renda et al.)

Sparsity 90.0%

Sparsity 95.0%

Sparsity 98.0%

Budgeting the retraining phase II
Table 1: ResNet-50 on ImageNet: Performance of the different learning rate translation schemes for One Shot IMP for target sparsities of70%, 80% and 90% and retrain times of 2.22% (2 epochs), 5.55% (5 epochs) and 11.11% (10 epochs) of the initial training budget. The first,second, and third best values are highlighted.
ImageNet

Model sparsity 70% Model sparsity 80% Model sparsity 90%
Budget: 2.22% 5.55% 11.11% 2.22% 5.55% 11.11% 2.22% 5.55% 11.11%
FT 73.51 ±0.04 73.98 ±0.04 74.44 ±0.11 70.45 ±0.20 71.81 ±0.11 72.68 ±0.07 56.75 ±0.01 61.60 ±0.30 64.61 ±0.21LRW 73.50 ±0.04 73.99 ±0.04 74.45 ±0.11 70.45 ±0.20 71.82 ±0.12 72.67 ±0.07 56.75 ±0.01 61.61 ±0.30 64.60 ±0.23SLR 70.93 ±0.01 72.58 ±0.03 73.69 ±0.11 70.48 ±0.04 72.37 ±0.02 73.44 ±0.18 67.19 ±0.23 69.45 ±0.01 70.80 ±0.09CLR 72.22 ±0.09 73.58 ±0.08 74.49 ±0.04 71.96 ±0.09 73.30 ±0.08 74.24 ±0.08 68.72 ±0.06 70.60 ±0.15 71.51 ±0.13LLR (ours) 72.39 ±0.13 73.65 ±0.05 74.34 ±0.02 72.07 ±0.09 73.41 ±0.05 74.23 ±0.10 68.90 ±0.05 70.48 ±0.01 71.53 ±0.09ALLR (ours) 73.69 ±0.03 74.37 ±0.05 74.89 ±0.04 72.96 ±0.15 74.02 ±0.08 74.71 ±0.04 69.56 ±0.07 71.19 ±0.01 71.99 ±0.07

BIMP and comparison to pruning-stable methods
Given a budget of T epochs, Budgeted IMP (BIMP) simply trains a network for some T0 < T epochs using a linearschedule and then applies IMP with ALLR on the output for the remaining T −T0 epochs. BIMP obtains a prunedmodel from scratchwithin the samebudget as pruning-stablemethods, while still maintaining the key characteristicsof IMP, i.e.,
� we ‘hard’ prune and do not allow weights to recover in subsequent steps and
� we do not impose any particular additional implicit bias during either training or retraining.
Table 2: ResNet-50 on ImageNet: Comparison between BIMP and pruning-stable methods when training for goal sparsity levels as denotedin themain columns. We denote the images-per-second throughput during training. Thefirst, second, and third best values are highlighted.ImageNet

Model sparsity 70% Model sparsity 80% Model sparsity 90%
Method # img/s Accuracy Speedup Sparsity Accuracy Speedup Sparsity Accuracy Speedup Sparsity
BIMP (ours) 1454 75.62 ±0.02 2 ±0.0 70.00 ±0.00 75.08 ±0.16 3 ±0.0 80.00 ±0.00 73.53 ±0.05 6 ±0.0 90.00 ±0.00GMP 1425 74.62 ±0.08 2 ±0.0 70.00 ±0.00 74.19 ±0.17 4 ±0.0 80.00 ±0.00 72.80 ±0.03 7 ±0.1 90.00 ±0.00GSM 1349 73.69 ±0.70 2 ±0.1 70.00 ±0.00 72.75 ±0.62 4 ±0.3 80.00 ±0.00 70.08 ±0.94 9 ±0.8 90.00 ±0.00DPF 1456 75.59 ±0.07 2 ±0.0 70.00 ±0.00 75.30 ±0.02 3 ±0.0 80.00 ±0.00 74.05 ±0.05 6 ±0.0 90.00 ±0.00DNW 530 75.60 ±0.01 2 ±0.0 70.00 ±0.00 75.27 ±0.01 3 ±0.0 80.00 ±0.00 74.29 ±0.03 5 ±0.1 90.00 ±0.00LC 1436 75.03 ±0.20 2 ±0.0 70.00 ±0.00 73.87 ±0.62 3 ±0.0 80.00 ±0.00 67.57 ±2.71 5 ±0.0 90.00 ±0.00STR 1396 70.66 ±0.13 3 ±0.0 75.34 ±0.01 70.70 ±0.13 4 ±0.0 80.93 ±0.00 70.13 ±0.01 8 ±0.0 90.00 ±0.00DST 1219 74.63 ±0.22 4 ±0.1 70.00 ±0.00 73.16 ±0.11 6 ±0.1 80.00 ±0.00 71.35 ±0.09 13 ±0.4 90.00 ±0.00


