
Compressed sparse tiles for memory-efficient
unstructured and semi-structured sparsity
Mike Lasby1, Max Zimmer2, Sebastian Pokutta2, Erik Schultheis3,4

Cooperation: 1University of Calgary, 2TU Berlin & Zuse Institute Berlin, 3Aalto University, 3IST Austria

Compressed sparse tiles for memory-efficient
unstructured and semi-structured sparsity
Mike Lasby1, Max Zimmer2, Sebastian Pokutta2, Erik Schultheis3,4

Cooperation: 1University of Calgary, 2TU Berlin & Zuse Institute Berlin, 3Aalto University, 3IST Austria

Introduction

Setting: Storing the parameters of LLMs inGPUmemory is challenging due
to their size.
To remedy:
� Quantization: Store less bits per parameter.
� Pruning: Store fewer parameters by setting many to zero.
However: Unstructured sparsity is hard to exploit efficiently on modern
hardware.
→ Encoding the sparsity pattern introduces memory overhead.
→ Enforcing structure in the sparsity is desirable, but leads to perfor-

mance degradation.
Goal: Find a format that offers a good balance between memory effi-
ciency, hardware acceleration and model performance.

Compressed Sparse Tiles

� Coordinate format (COO): Each non-prunedweight is identified by row
index, column index, and weight value → weights are three times as
expensive as in dense format

� Compressed Sparse Row (CSR): Performs localization of weights hier-
archically - first, group together by coarse location (row), then by finer
location (column).

Observations:
� The inner locator of CSR still needs 16 bits → reduce size of regions

such that 8 bits are sufficient by replacing pointers to row starts with
pointers to 256-tile starts

� Problem: We have traded less bits per weight for a larger number of
pointers → inefficient at high sparsity, since we store more pointers
than weights

� Idea: Group tiles into larger super-tiles (32 bit), use smaller-sized off-
sets to identify the within-super-tile position.

Overview of CS256:
1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1

2

3

2 3 4 5 0 3

1 7

8 1 3 8

Tile size: T

Neurons: N

Features: M
Non-zero: V

V =

1 2 3 4 5

1 2 1 0 1 1

6

2 3 4 5 0 3 1 7 8 1 7 8

Extract values from matrix

Size: V × 16 bits

I = 2 3 1 2 3 4 1 2 2 4 3 4

Set up within-tile indices (here 4, actually 8 bits)

Size: v × 8 bits

P = 1 4 5

Set up neuron pointers (32 bits)

Size: N × 32 bits

O = 1 2 1 0 1 1

Set up tile sizes (8 bits)

Size:
⌈
M
T

⌉
×N × 8 bits

Figure 1: Visualization of the CS256 format, using a smaller tile size of 4 for illustration.

Tradeoffs of different formats

0 10 20 30 40 50
fraction of non-zeros [%]

0

20

40

60

80

100

sp
ac

e 
vs

 d
en

se
 [%

]

16 bits per weight
coo
csc
bit
cs256
Q8
Q4

Figure 2: Compression ratio of several sparse storage formats at 16 bit weight precision,
compared with 8 and 4 bit quantization (assuming effectively 4.127 bits per parameter
(Dettmers et al., 2024)).

To achieve 50% memory reduction:
� Coordinate format (COO): Requires sparsity of 83.5%.
� Compressed Sparse Column (CSC): Requires sparsity of 75%.
� CS256: Requires sparsity of≈ 70%.
CS256:
� Offers better balance between space efficiency and hardware acceler-

ation.
� Is essentially unstructured, but with less overhead than CSC.

Experimental Results
Setup:
� We extend SparseGPT to our format.
� Model: Llama-3.1-8B-Instruct
� Calibration dataset: 512 samples from UltraChat-200K
� Evaluation dataset: 25-shot ARC-C

Results:

Unstructured CS256 N:256 N:4
Sparse format

0

10

20

30

40

50

60

AR
C-

C 
ac

cu
ra

cy
 (%

)

53.67

31.66

22.78

53.92

32.94

21.84

51.79

27.82
20.90

38.65

21.25 22.70

Sparsity (%)
50
66
75

Figure 3: ARC-C accuracy for various sparsities and formats. CS256 matches unstruc-
tured sparsity. For N:M, M = 256 yields considerable improvements over the 1:4, 2:6,
and 2:4 formats. As most questions in the ARC-C corpus have 4 choices, the 75% sparse
models and 2:6 formats fail to exceed chance accuracy.


