
Compressed sparse tiles for memory-efficient
unstructured and semi-structured sparsity
Mike Lasby1, Max Zimmer2, Sebastian Pokutta2, Erik Schultheis3,4

Cooperation: 1University of Calgary, 2TU Berlin & Zuse Institute Berlin, 3Aalto University, 3IST Austria

Compressed sparse tiles for memory-efficient
unstructured and semi-structured sparsity
Mike Lasby1, Max Zimmer2, Sebastian Pokutta2, Erik Schultheis3,4

Cooperation: 1University of Calgary, 2TU Berlin & Zuse Institute Berlin, 3Aalto University, 3IST Austria

Introduction

Setting: Storing the parameters of LLMs inGPUmemory is challenging due
to their size.
To remedy:
� Quantization: Store less bits per parameter.
� Pruning: Store fewer parameters by setting many to zero.
However: Unstructured sparsity is hard to exploit efficiently on modern
hardware.
→ Encoding the sparsity pattern introduces memory overhead.
→ Enforcing structure in the sparsity is desirable, but leads to perfor-

mance degradation.
Goal: Find a format that offers a good balance between memory effi-
ciency, hardware acceleration and model performance.

Compressed Sparse Tiles

� Coordinate format (COO): Each non-prunedweight is identified by row
index, column index, and weight value → weights are three times as
expensive as in dense format

� Compressed Sparse Row (CSR): Performs localization of weights hier-
archically - first, group together by coarse location (row), then by finer
location (column).

Observations:
� The inner locator of CSR still needs 16 bits → reduce size of regions

such that 8 bits are sufficient by replacing pointers to row starts with
pointers to 256-tile starts

� Problem: We have traded less bits per weight for a larger number of
pointers → inefficient at high sparsity, since we store more pointers
than weights

� Idea: Group tiles into larger super-tiles (32 bit), use smaller-sized off-
sets to identify the within-super-tile position.

Overview of CS256:
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Figure 1: Visualization of the CS256 format, using a smaller tile size of 4 for illustration.

Tradeoffs of different formats
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Figure 2: Compression ratio of several sparse storage formats at 16 bit weight precision,
compared with 8 and 4 bit quantization (assuming effectively 4.127 bits per parameter
(Dettmers et al., 2024)).

To achieve 50% memory reduction:
� Coordinate format (COO): Requires sparsity of 83.5%.
� Compressed Sparse Column (CSC): Requires sparsity of 75%.
� CS256: Requires sparsity of≈ 70%.
CS256:
� Offers better balance between space efficiency and hardware acceler-

ation.
� Is essentially unstructured, but with less overhead than CSC.

Experimental Results
Setup:
� We extend SparseGPT to our format.
� Model: Llama-3.1-8B-Instruct
� Calibration dataset: 512 samples from UltraChat-200K
� Evaluation dataset: 25-shot ARC-C

Results:
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Figure 3: ARC-C accuracy for various sparsities and formats. CS256 matches unstruc-
tured sparsity. For N:M, M = 256 yields considerable improvements over the 1:4, 2:6,
and 2:4 formats. As most questions in the ARC-C corpus have 4 choices, the 75% sparse
models and 2:6 formats fail to exceed chance accuracy.


