Algorithm

1: 🕇	for communication round $t = 0$ to $T - 1$ do	
2:	SERVER: Broadcast parameters $ar{w}_i$ to the clients	
3:	CLIENTS: Train on private datasets	
	FedAVG	
4:	CLIENTS: Send updated parameters to server	
5:	SERVER: Aggregate parameters to obtain $ar{w}_i^{t+1}$	
	FedDistill	
6:	CLIENTS: Send public dataset predictions to server	
7:	SERVER: Train on public dataset with aggregated	
	client predictions to obtain $ar{w}_i^{t+1}$	
8: E	end for	
9: (Output: \bar{w}_T	

- Federated Averaging (FedAVG): Clients share model parameters.
- Federated Distillation (FedDistill): Clients share predictions on a public, unlabeled dataset. Server distills knowledge using these predictions.

FedAVG vs. FedDistill Attack Vectors

FedAVG: (A single attacker can arbitrarily shift \overline{w} !)

$$\bar{w} \leftarrow \frac{1}{N} \sum_{i \in \mathcal{H} \cup \mathcal{B}} w_i = \frac{1}{N} \sum_{i \in \mathcal{B}} w_i + \frac{1}{N}$$

Attack vector

$$\frac{1}{N} + \frac{1}{N} \sum_{i \in \mathcal{H}} w_i$$

FedDistill: Indirect influence via distillation targets.

Honest distillation:
$$\min_{w} \sum_{x \in D_p} \mathcal{L}(h(x, w), \bar{Y}_{\mathcal{H}}(x))$$

Actual distillation: $\min_{w} \sum_{x \in D_p} \mathcal{L}(h(x, w), \underbrace{\overline{Y}(x)}_{\text{Attack vector}})$

where $\bar{Y}(x) = \frac{1}{N} \sum_{i \in \mathcal{H} \cup \mathcal{B}} Y_i(x)$ and $\bar{Y}_{\mathcal{H}}(x) = \frac{1}{N} \sum_{i \in \mathcal{H}} Y_i(x)$ \Rightarrow Indirect influence, predictions $Y_i(x)$ lie in (bounded) probability simplex.

Robustness of FedDistill

Theorem: (Informal) If \tilde{w} is a stationary point of $(\mathcal{P}_{distill})$, then it is also an $\mathcal{O}(C^2\alpha^2)$ -approximate stationary point of $(\mathcal{P}_{\mathsf{honest}})$, where C > 0 is a constant independent of the client predictions. Further, in expectation, running SGD on $(\mathcal{P}_{distill})$ to achieve an ε -approximate stationary point yields an $\mathcal{O}(\varepsilon + C^2 \alpha^2)$ -approximate stationary point of (\mathcal{P}_{honest}) .

Intuition: $Y \mapsto \nabla_w \mathcal{L}(h(x, w), \cdot)$ is Lipschitz for typical loss functions.

On the Byzantine-Resilience of Distillation-Based Federated Learning

Clothing1M (ResNet-50), BA=69.0±0.3						
Mean	GM	Cronus	ExpGuard			
84.6±0.1	85.4 ±0.6	84.7 ±0.3	85.4 ±0.0			
73.4±8.6	83.3±0.2	80.6±2.3	85.4±0.1			
68.4±0.8	78.4±0.9	74.5±0.6	85.5±0.8			
84.8±0.1	78.0±1.6	78.5±1.1	83.8±0.2			
85.0±0.1	79.4 ±0.8	77.3±0.1	83.2±0.9			
CIFAR-10 (ResNet-18), BA=87.7±1.2						
CIFAR-10	o (ResNet-	18), BA=87	.7 ±1.2			
CIFAR-10 Mean	o (ResNet- GM	18), BA=87 Cronus	7±1.2 ExpGuard			
CIFAR-10 Mean 69.4±1.2	o (ResNet- GM 68.7±0.8	18), BA=87 Cronus 68.6±0.4	.7±1.2 ExpGuard 68.7±1.1			
CIFAR-10 Mean 69.4±1.2 40.3±3.3	0 (ResNet- GM 68.7±0.8 58.3±0.7	18), BA=87 Cronus 68.6±0.4 61.4±0.5	5.7±1.2 ExpGuard 68.7±1.1 68.3±0.7			
CIFAR-10 Mean 69.4±1.2 40.3±3.3 33.7±2.7	0 (ResNet- GM 68.7±0.8 58.3±0.7 58.4±0.3	18), BA=87 Cronus 68.6±0.4 61.4±0.5 43.9±12.9	5.7±1.2 ExpGuard 68.7±1.1 68.3±0.7 68.5±1.0			
CIFAR-10 Mean 69.4±1.2 40.3±3.3 33.7±2.7	0 (ResNet- GM 68.7±0.8 58.3±0.7 58.4±0.3	18), BA=87 Cronus 68.6±0.4 61.4±0.5 43.9±12.9	5.7±1.2 ExpGuard 68.7±1.1 68.3±0.7 68.5±1.0			
CIFAR-10 Mean 69.4±1.2 40.3±3.3 33.7±2.7 33.7±2.7 63.4±1.12	C (ResNet- GM 68.7±0.8 58.3±0.7 58.4±0.3 58.4±0.3 55.2±1.1	18), BA=87 Cronus 68.6±0.4 61.4±0.5 43.9±12.9 43.9±12.9 54.8±2.1	57±1.2 ExpGuard 68.7±1.1 68.3±0.7 68.5±1.0 68.5±1.0 57.7±0.5			

Loss Maximization Attack (LMA): Byzantine clients choose predictions $Y_{\mathcal{B}}(x)$ to maximize the server's distillation loss $\mathcal{L}(h(x,w),\overline{Y}(x))$ given the honest mean $\overline{Y}_{\mathcal{H}}(x)$. This means predicting the class with the minimum probability under $\overline{Y}_{\mathcal{H}}(x)$.

Class Prior Attack (CPA): Exploits semantic similarity. Uses a class similarity matrix C. Predicts the class least similar (via C) to the most likely class under $\overline{Y}_{\mathcal{H}}(x)$.

Attack Obfuscation: HIPS

- dictions (e.g., one-hot vectors).

Illustration in Δ_3 . HIPS restricts Byzantine prediction (yellow area) based on honest predictions (blue dots).

ExpGuard

ExpGuard:

- Uses weighted average for aggregation.

New Attacks

Problem: Aggressive attacks (LMA/CPA) generate easily detectable pre-

HIPS Idea: Make attacks stealthier by constraining Byzantine predictions $Y_{\mathcal{B}}$ to lie within the convex hull of honest predictions $\{Y_i\}_{i \in \mathcal{H}}$. **Tradeoff:** Increased stealth vs. potentially reduced attack impact.

New Defence: ExpGuard

1: Input: Pred. $Y_i^{t+1}(\mathcal{D}_p)$, weights p_i , $\forall i \in N$, aggregation method AGG.

$\forall i \in [n]$	Compute outlier scores
$\in [n]$	▷ Update weights
$= p_i^{t+1} Y_i^{t+1}(x)$	\triangleright Comp. weighted sum $\forall x \in \mathcal{D}_p$
$\forall i \in [N]$	

Enhances robust aggregators by incorporating historical information. Tracks each client's deviation from the robust aggregate over time. • Assigns weights p_i to clients, reducing weight for larger deviations.

Significantly improves resilience across various base aggregators, often approaching performance of the non-attacked setting.