
On the Byzantine-Resilience of Distillation-Based Federated LearningChristophe Roux, Max Zimmer, Sebastian PokuttaOn the Byzantine-Resilience of Distillation-Based Federated LearningChristophe Roux, Max Zimmer, Sebastian Pokutta

Algorithm

Federated Learning

1: for communication round t = 0 to T − 1 do
2: SERVER: Broadcast parameters w̄i to the clients
3: CLIENTS: Train on private datasets

FedAVG
4: CLIENTS: Send updated parameters to server
5: SERVER: Aggregate parameters to obtain w̄t+1

i

FedDistill
6: CLIENTS: Send public dataset predictions to server
7: SERVER: Train on public dataset with aggregatedclient predictions to obtain w̄t+1

i

8: end for
9: Output: w̄T

 Federated Averaging (FedAVG): Clients share model parameters.
 Federated Distillation (FedDistill): Clients share predictions on a public,unlabeled dataset. Server distills knowledge using these predictions.

FedAVG vs. FedDistill Attack Vectors

FedAVG: (A single attacker can arbitrarily shift w̄!)
w̄ ← 1

N

∑
i∈H∪B

wi =
1

N

∑
i∈B

wi︸ ︷︷ ︸Attack vector

+
1

N

∑
i∈H

wi

FedDistill: Indirect influence via distillation targets.
Honest distillation: min

w

∑
x∈Dp

L(h(x,w), ȲH(x)) (Phonest)
Actual distillation: min

w

∑
x∈Dp

L(h(x,w), Ȳ (x)︸ ︷︷ ︸Attack vector
) (Pdistill)

where Ȳ (x) = 1
N

∑
i∈H∪B Yi(x) and ȲH(x) = 1

N

∑
i∈H Yi(x)

⇒ Indirect influence, predictions Yi(x) lie in (bounded) probability simplex.

Robustness of FedDistill

Theorem: (Informal) If w̃ is a stationary point of (Pdistill), then it is also
an O(C2α2)-approximate stationary point of (Phonest), where C > 0 is
a constant independent of the client predictions. Further, in expectation,
running SGD on (Pdistill) to achieve an ε-approximate stationary point yields
anO(ε + C2α2)-approximate stationary point of (Phonest).

Intuition: Y 7→ ∇wL(h(x,w), ·) is Lipschitz for typical loss functions.

Motivation: FedDistill is more byzantine-resilient than FedAVG

ResNet-18 on CINIC-10: Final test accuracy of FedAVG and FedDistill, varying the fraction of byzantine clients for two naive attacks. For FedAVG, thebyzantine clients simply send Gaussian noise (GN) instead of parameter updates. For FedDistill, they send random one-hot predictions, we refer tothis as the Random Label Flip (RLF) attack.

Results

CINIC-10 (ResNet-18), BA=80.2±0.1 Clothing1M (ResNet-50), BA=69.0±0.3
Mean GM Cronus ExpGuard Mean GM Cronus ExpGuard

RLF 76.9±0.4 79.3±0.3 76.6±0.0 78.8±0.1 84.6±0.1 85.4±0.6 84.7±0.3 85.4±0.0LMA 54.6±1.2 75.0±0.6 71.1±1.7 77.4±1.1 73.4±8.6 83.3±0.2 80.6±2.3 85.4±0.1CPA 45.9±0.4 71.2±5.2 65.9±3.3 79.2±0.2 68.4±0.8 78.4±0.9 74.5±0.6 85.5±0.8
HIPS+LMA 75.3±0.1 68.7±0.1 67.7±1.0 73.3±0.9 84.8±0.1 78.0±1.6 78.5±1.1 83.8±0.2HIPS+CPA 74.2±1.1 65.8±0.5 66.4±0.1 72.9±0.7 85.0±0.1 79.4±0.8 77.3±0.1 83.2±0.9

CIFAR-100 (WideResNet-28), BA=66.8±0.5 CIFAR-10 (ResNet-18), BA=87.7±1.2
Mean GM Cronus ExpGuard Mean GM Cronus ExpGuard

RLF 65.2±0.7 65.2±0.3 44.3±1.7 63.9±0.6 69.4±1.2 68.7±0.8 68.6±0.4 68.7±1.1LMA 41.8±4.4 51.3±0.1 44.6±0.2 57.2±1.2 40.3±3.3 58.3±0.7 61.4±0.5 68.3±0.7CPA 43.3±1.2 56.7±0.9 55.3±0.3 62.1±1.4 33.7±2.7 58.4±0.3 43.9±12.9 68.5±1.0
HIPS+LMA 50.3±3.3 34.3±0.4 34.4±2.8 49.3±0.5 33.7±2.7 58.4±0.3 43.9±12.9 68.5±1.0HIPS+CPA 47.2±4.2 32.6±4.5 28.1±0.5 46.4±0.0 63.4±1.12 55.2±1.1 54.8±2.1 57.7±0.5
FedDistill: 20 clients of which nine are byzantine (α=0.45). Final test accuracy averaged over multiple runs with standard deviation for differentattacks and defences. BA refers to the baseline accuracy, i.e., the final accuracy of FedDistill if all clients are honest.

New Attacks

Loss Maximization Attack (LMA): Byzantine clients choose predictions
YB(x) to maximize the server’s distillation loss L(h(x,w), Ȳ (x)) given thehonest mean ȲH(x). This means predicting the class with the minimumprobability under ȲH(x).
Class Prior Attack (CPA): Exploits semantic similarity. Uses a classsimilarity matrixC. Predicts the class least similar (viaC) to the most likelyclass under ȲH(x).

Attack Obfuscation: HIPS

 Problem: Aggressive attacks (LMA/CPA) generate easily detectable pre-dictions (e.g., one-hot vectors).
 HIPS Idea: Make attacks stealthier by constraining Byzantine predic-tions ȲB to lie within the convex hull of honest predictions {Yi}i∈H.
 Tradeoff: Increased stealth vs. potentially reduced attack impact.

Illustration in∆3. HIPS restricts Byzantine prediction (yellow area) based on honest predictions (blue dots).

New Defence: ExpGuard

ExpGuard

1: Input: Pred. Y t+1
i (Dp), weights pi, ∀i ∈ N , aggregation method AGG.

2: σi← AGG(Y t+1
i (Dp)), ∀i ∈ [n] ▷ Compute outlier scores

3: pt+1i ← pi exp(−σi), ∀i ∈ [n] ▷ Update weights
4: Ȳ t+1

i (x)← 1∑n
j=1 p

t+1
j

∑N
i=1 p

t+1
i Y t+1

i (x) ▷ Comp. weighted sum ∀x ∈ Dp

5: Output: Ȳ t+1
i (x), pt+1i , ∀i ∈ [N ]

ExpGuard:
 Enhances robust aggregators by incorporating historical information.
 Tracks each client’s deviation from the robust aggregate over time.
 Assigns weights pi to clients, reducing weight for larger deviations.
 Uses weighted average for aggregation.
 Significantly improves resilience across various base aggregators, oftenapproaching performance of the non-attacked setting.


