

Neural Parameter Regression for Explicit Representations of PDE Solution Operators

Konrad Mundinger^{1,2}, Max Zimmer¹ & Sebastian Pokutta^{1,2}

¹Department for AI in Society, Science, and Technology, Zuse Institute Berlin, Germany ²Institute of Mathematics, Technische Universität Berlin, Germany

Introduction and Preliminaries	Linear Example: Heat Equation				
Consider $\Omega \subset \mathbb{R}^d$ bounded with boundary $\partial \Omega$, and $T > 0$ fixed. • Goal: Solve initial boundary value problems (IBVPs) $\partial_t u(t,x) = \mathcal{N}(u(t,x)),$	 One-dimensional heat equation ∂_tu = κ∂_{xx} with constant Dirichlet boundary conditions on Ω = [0,1] and T = 1. Initial conditions are parametrized as Fourier polynomials. 				
with initial condition $u(0,x) = u_0(x)$ and boundary condition $\mathscr{B}(u(t,x)) = 0$ • Objective: Approximate the solution operator <i>G</i> , i.e.,	$J(x) = a_0 + \sum_{i=1}^{n} a_n \sin(2\pi nx) + b_n \cos(2\pi nx)$ with $\max_{i=1,\dots,n} \max\{ a_i , b_i \} \le c$. In our experiments, $n = 3$ and $c = 1$				

(1)

 $G: \mathscr{X} \supset K \rightarrow \mathscr{Y}, u_0 \mapsto ((t, x) \mapsto u(t, x)),$

between the infinite-dimensional Banach spaces \mathscr{X} and \mathscr{Y} .

Approaches:

- **PINNs** incorporate the PDE residual and boundary conditions into a loss function to approximate solutions without training data.
- (Physics-Informed) **DeepONets** extend PINNs to mappings between function spaces.
- Hypernetworks generate weights for target networks based on input conditions.

Figure 2: Results for the heat equation: The first and second row correspond to $u_0(x) = 0.5 \sin(4\pi x) + \cos(2\pi x) + 0.3 \cos(6\pi x) + 0.8$ and the $u_0(x) = \sum_{n=1}^{3} (\sin(n\pi x) + \cos(n\pi x)) + 1$, respectively. The columns shows the reference solutions, the model predictions and the absolute differences, respectively.

- **Explicit Parameterization:** $G(u_0)$ is parametrized by a NN for each u_0 .
- **Low-rank** parametrization of the target network T_{θ} .
- Data-free Training: No need for training data.

Nonlinear Example: Burgers Equation

- One-dimensional (inviscid) Burgers equation $\partial_t u = -u \partial_x u$ on $\Omega = [0, 1]$ and T = 1 with a constant Dirichlet boundary condition at x = 0.
- Initial conditions are parametrized as affine functions $u_0(x) = ax + b$ with $a \in [-1,0]$ and $b \in [1,2]$.

Neural Parameter Regression

- Simpler Optimization: Reparameterization of the output to enforce boundary conditions.
- **Flexibility:** Efficient adaptation to out-of-distribution examples.

Figure 3: The first row shows the results for the initial condition $u_0(x) = -0.9x + 1.1$ and the second row for $u_0(x) = -0.2x + 1.8$

Finetuning to out-of-distribution examples

Figure 1: The heat equation with the out-of-distribution condition $u_0(x) = 5x + 3\sin(4\pi x)$. We plot the reference solution (left), the absolute difference to the reference solution before fine-tuning (middle) and affine-tuning (right).

- Finetuning step: The model can quickly adapt to out-of-distribution (OOD) examples.
- For an OOD u_0 , we compute the parameters of the target network from $H_{\Phi}(u_0)$.
- We unfold the target network by computing the low-rank products and make all parameters trainable

Results

		Hidden dim 32		Hidden dim 64			DeenONet	
Equation	Metric	Rank 4	Rank 8	Rank 16	Rank 4	Rank 8	Rank 16	Deeponet
Heat	L^1	0.0037	0.0028	0.0037	0.0036	0.0026	0.0021	0.0026
	L^2	0.0051	0.0037	0.0047	0.0046	0.0031	0.0030	0.0036
	L^{∞}	0.0311	0.0171	0.0165	0.0166	0.0268	0.0159	0.0349
	# Target	993	1761	3297	1985	3521	6593	4320
	# Hyper	79137	129057	228897	143617	243457	443137	16672
	Training Time	62 min	65 min	69 min	67 min	71 min	76 min	47 min
Burgers	L^1	0.0007	0.0006	0.0004	0.0005	0.0006	0.0005	0.0011
	L^2	0.0023	0.0022	0.0014	0.0016	0.0019	0.0017	0.0030
	L^{∞}	0.0282	0.0276	0.0206	0.0218	0.0238	0.0223	0.0328
	# Target	993	1761	3297	1985	3521	6593	14752
	# Hyper	79137	129057	228897	143617	243457	443137	57888
	Training Time	16 min	17 min	20 min	17 min	20 min	24 min	14 min

Future Work

- Rigorous analysis of the approximation-theoretic properties of the proposed method.
- Application to higher-dimensional PDEs and more complex boundary conditions.

