
Neural Discovery in Mathematics: Do Machines Dream of Colored Planes?
Konrad Mundinger, Max Zimmer, Aldo Kiem, Christoph Spiegel, and Sebastian Pokutta

Correspondence: mundinger@zib.de, spiegel@zib.de

Neural Discovery in Mathematics: Do Machines Dream of Colored Planes?
Konrad Mundinger, Max Zimmer, Aldo Kiem, Christoph Spiegel, and Sebastian Pokutta

Correspondence: mundinger@zib.de, spiegel@zib.de

Mathematical Discovery through ML

The Goal: Using ML, prove the existence of objects with certain properties
to advance our understanding of abstract structures.

Case Study: Hadwiger-Nelson Problem / Chromatic Number of the Plane
What is the minimum number of colors c needed to color the Euclidean
plane so that no two points at unit distance share the same color?

Lower bounds have been explored using SAT solvers but new colorings
f : R2 →{1, . . . ,c}, f (x) ̸= f (y) whenever ∥x− y∥= 1 (1)

relied on human mathematical intuition.

Our Contribution
A machine learning framework that enables gradient-based exploration
of the solution spaces. This led to several new mathematical results im-
proving bounds for long-standing open problems.

The Methodology

1. Probabilistic Reformulation: Replace discrete colorings f : R2 →
{1, . . . ,c} with probabilistic ones p : R2 → ∆c and minimize:

LR(p) =
∫

[−R,R]2

∫
∂B1(x)

p(x)T p(y)dν(y)dµ(x). (2)

Key Insight
If LR(p) = 0 then argmax(p(x)) satisfies the original constraint a.e.

2. Neural Network Approximation: Use SIRENNNs pθ as universal function
approximators with inherent spectral bias towards structured solutions.

3. Unsupervised Training: Sample (xi,yi) with ∥xi − yi∥ = 1 and minimize
LR(p) using the approximate gradient

∇θLR(pθ)≈ ∇θ

[
1
n

n

∑
i=1

pθ(xi)
T pθ(yi)

]
. (3)

4. Formalization: Trained pθ only provides numerical evidence. We extract
formal colorings through mathematical analysis or automated procedures.

Minor modifications adapt the framework to different problem variants.

Links for more

Appl. 1: Almost Coloring the Plane

Question: How much of the plane needs to be re-
moved so that we can color the remainder?

History: Pritikin (1998) and Parts (2020) established
99.985% can be colored with c = 6 colors and Parts
(2020) established best bounds for c ∈ {1, . . . ,5}.

Results: Adding an additional "removal" color, we solve

L λ

R (pθ) = LR(pc
θ)+λ

∫
[−R,R]2

pθ(x)c+1 dµ(x). (4)

Re-discovered known constructions for c ̸= 5, but:

Theorem
96.26% of the plane can be colored with 5 colors.

Fig. 2: Almost five-coloring: formal construction covering 96.26% of the plane.

Formalization:
1. Extract periodic structure via tiling vectors v1,v2.
2. Enforce periodicity by prepending change-of-basis
mapping x 7→ M−1x mod 1 and retrain.

3. Discretize finely using parallelogram-structure.
4. Iteratively fix unit-distance conflicts through a mini-
mum vertex cover problem.

5. Resolve all remaining conflicts by removing pixels.

Is this the best possible?

# colors 1 2 3 4 5 6

prior best 77.04% 54.13% 31.20% 8.25% 4.01% 0.02%

our result 77.13% 54.29% 31.51% 8.52% 3.74% 0.04%

Table 1: Fraction of plane requiring removal (lower is better)

Appl. 2: Avoiding Different Distances

Question: Can we avoid distance di in color i?

History: Soifer calls determining which "type"
(1,1,1,1,1,d) is realized by a coloring extremely
difficult. Previously known range was

0.415 ≈
√

2−1 ≤ d ≤ 1/
√

5 ≈ 0.447.

Figure 1: Coloring suggested by NN (L) and formalized version (R).

Results: Through the modified loss
c

∑
k=1

∫
[−R,R]2

∫
∂Bdk(x)

pθ(x)k pθ(y)k dνk(y)dµ(x) (5)

we discovered two novel colorings that extended range
significantly. First improvement in 30 years!

Theorem
(1,1,1,1,1,d) can be realized for 0.35 ≤ d ≤ 0.65.

Is this the best possible?
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Fig. 4: Conflict rate vs. distance d revealing extended valid ranges

Erdős also asked for the polychromatic number of
the plane, i.e., the smallest c for which some type
(d1, . . . ,dc) can be realized. We found no evidence
that the current bound of 6 can be improved.

Appl. 2 (cntd.)

Fig. 5: A 6-coloring of the plane where no red points appear at distance 0.45

and no other color has monochromatic unit-distance pairs.

Appl. 3: Avoiding Triangles

Question: What if we avoid triangles?

History: Conjecture of Erdős et al. states that 3 colors
always suffice. Bounds due to Aichholzer & Perz (2019).

Fig. 6: Classification of triangles by required colors

Outlook

Broader Applications:
 Other Hadwiger-Nelson variants?
 Graph-theoretic problems via graph limits?
 Non-differentiable constraints through adversary?

Our approach demonstrates how ML can drive
mathematical discovery and lead to novel insights.


