Neural Discovery in Mathematics: Do Machines Dream of Colored Planes?

Konrad Mundinger, Max Zimmer, Aldo Kiem, Christoph Spiegel, and Sebastian Pokutta

Correspondence: mundinger@zib.de, spiegel@zib.de

Mathematical Discovery through ML

The Goal: Using ML, prove the existence of objects with certain properties to advance our understanding of abstract structures.

Case Study: Hadwiger-Nelson Problem / Chromatic Number of the Plane

What is the minimum number of colors c needed to color the Euclidean plane so that no two points at unit distance share the same color?

Lower bounds have been explored using SAT solvers but new colorings

$$f: \mathbb{R}^2 \to \{1, \dots, c\}, \quad f(x) \neq f(y)$$
 whenever $\|x - y\| = 1$ (1) relied on human mathematical intuition.

Our Contribution

A machine learning framework that enables gradient-based exploration of the solution spaces. This led to several new mathematical results improving bounds for long-standing open problems.

The Methodology

1. Probabilistic Reformulation: Replace discrete colorings $f: \mathbb{R}^2 \to \{1, \ldots, c\}$ with probabilistic ones $p: \mathbb{R}^2 \to \Delta^c$ and minimize:

$$\mathscr{L}_R(p) = \int \int \int p(x)^T p(y) \, \mathrm{d}\nu(y) \, \mathrm{d}\mu(x). \tag{2}$$

$$[-R,R]^2 \, \partial B_1(x)$$

Key Insight

If $\mathcal{L}_R(p) = 0$ then $\arg\max(p(x))$ satisfies the original constraint a.e.

- 2. Neural Network Approximation: Use SIREN NNs p_{θ} as universal function approximators with inherent spectral bias towards structured solutions.
- **3. Unsupervised Training:** Sample (x_i, y_i) with $||x_i y_i|| = 1$ and minimize $\mathcal{L}_R(p)$ using the approximate gradient

$$\nabla_{\theta} \mathcal{L}_R(p_{\theta}) \approx \nabla_{\theta} \left[\frac{1}{n} \sum_{i=1}^n p_{\theta}(x_i)^T p_{\theta}(y_i) \right].$$
 (3)

4. Formalization: Trained p_{θ} only provides numerical evidence. We extract formal colorings through mathematical analysis or automated procedures.

Minor modifications adapt the framework to different problem variants.

Links for more

Appl. 1: Almost Coloring the Plane

Question: How much of the plane needs to be removed so that we can color the remainder?

History: Pritikin (1998) and Parts (2020) established 99.985% can be colored with c=6 colors and Parts (2020) established best bounds for $c \in \{1, ..., 5\}$.

Results: Adding an additional "removal" color, we solve

$$\mathscr{L}_R^{\lambda}(p_{\theta}) = \mathscr{L}_R(p_{\theta}^c) + \lambda \int_{[-R,R]^2} p_{\theta}(x)_{c+1} d\mu(x). \tag{4}$$

Re-discovered known constructions for $c \neq 5$, but:

Theorem

96.26% of the plane can be colored with 5 colors.

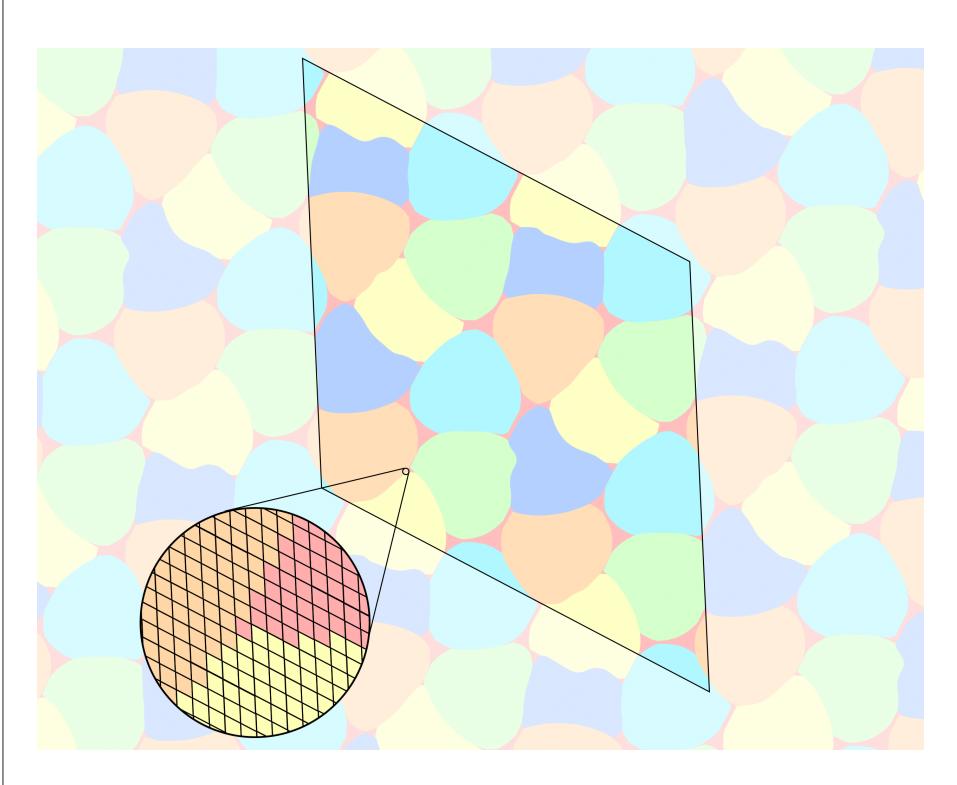


Fig. 2: Almost five-coloring: formal construction covering 96.26% of the plane.

Formalization:

- 1. Extract periodic structure via tiling vectors v_1, v_2 .
- 2. Enforce periodicity by prepending change-of-basis mapping $x \mapsto M^{-1}x \mod 1$ and retrain.
- 3. Discretize finely using parallelogram-structure.
- 4. Iteratively fix unit-distance conflicts through a minimum vertex cover problem.
- 5. Resolve all remaining conflicts by removing pixels.

Is this the best possible?

# colors	1	2	3	4	5	6
prior best	77.04%	54.13%	31.20%	8.25%	4.01%	0.02%
our result	77.13%	54.29%	31.51%	8.52%	3.74%	0.04%

Table 1: Fraction of plane requiring removal (lower is better)

Appl. 2: Avoiding Different Distances

Question: Can we avoid distance d_i in color i?

History: Soifer calls determining which "type" (1,1,1,1,1,d) is realized by a coloring extremely difficult. Previously known range was

$$0.415 \approx \sqrt{2} - 1 \le d \le 1/\sqrt{5} \approx 0.447.$$

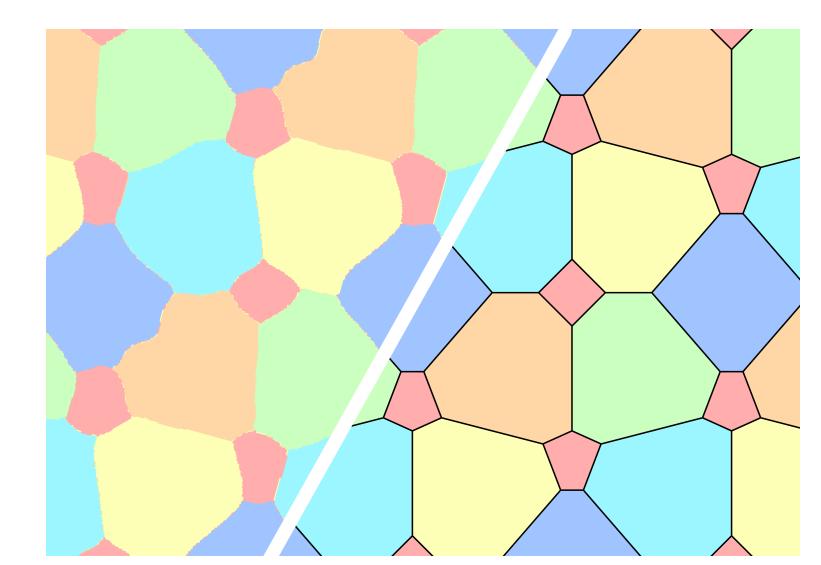


Figure 1: Coloring suggested by NN (L) and formalized version (R).

Results: Through the modified loss

$$\sum_{k=1}^{c} \int \int \int p_{\theta}(x)_{k} p_{\theta}(y)_{k} dv_{k}(y) d\mu(x)$$
 (5)

we discovered two novel colorings that extended range significantly. First improvement in 30 years!

Theorem

(1,1,1,1,1,d) can be realized for $0.35 \le d \le 0.65$.

Is this the best possible?

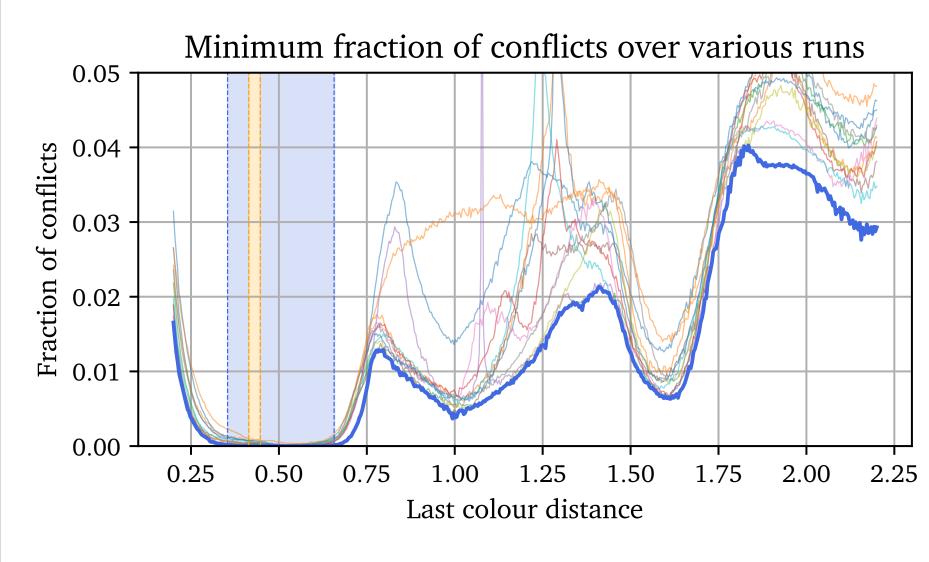


Fig. 4: Conflict rate vs. distance d revealing extended valid ranges

Erdős also asked for the polychromatic number of the plane, i.e., the smallest c for which some type (d_1, \ldots, d_c) can be realized. We found no evidence that the current bound of 6 can be improved.

Appl. 2 (cntd.)

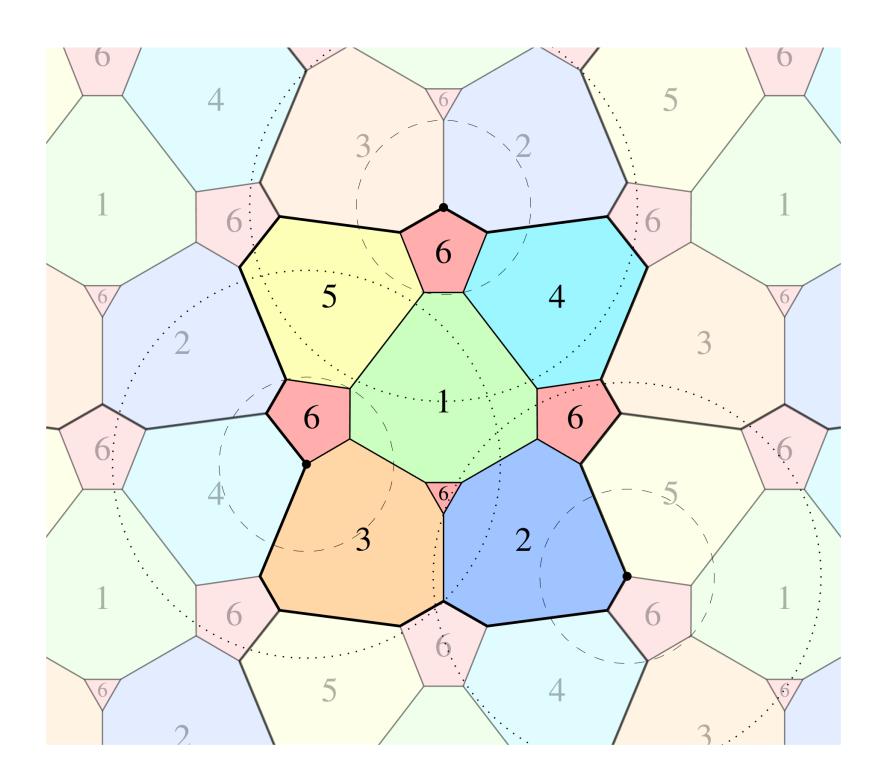


Fig. 5: A 6-coloring of the plane where no red points appear at distance 0.45 and no other color has monochromatic unit-distance pairs.

Appl. 3: Avoiding Triangles

Question: What if we avoid triangles?

History: Conjecture of Erdős et al. states that 3 colors always suffice. Bounds due to Aichholzer & Perz (2019).

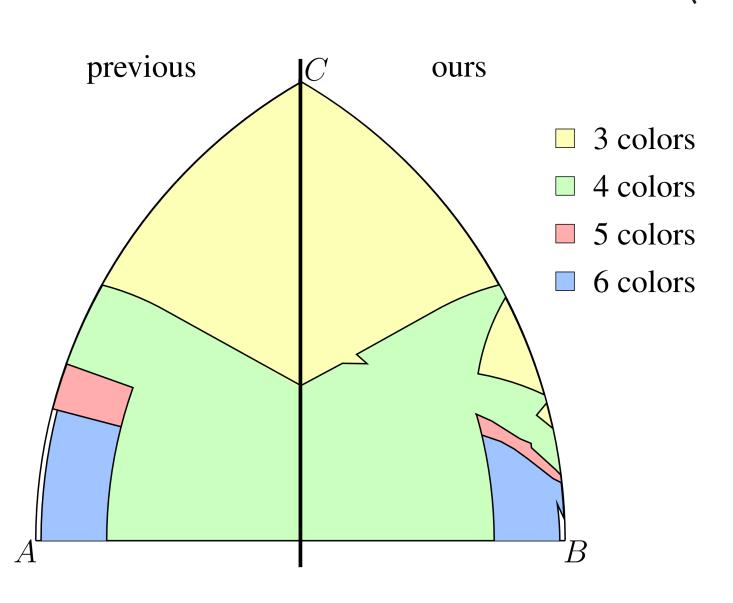


Fig. 6: Classification of triangles by required colors

Outlook

Broader Applications:

- Other Hadwiger-Nelson variants?
- Graph-theoretic problems via graph limits?
- Non-differentiable constraints through adversary?

Our approach demonstrates how ML can drive mathematical discovery and lead to novel insights.