Computational Algebra with Attention: Transformer Oracles for Border Basis Algorithms

Hiroshi Kera^{*123} Nico Pelleriti^{*3} Yuki Ishihara⁴ Max Zimmer³ Sebastian Pokutta³

¹Chiba University ²National Institute of Informatics ³Zuse Institute Berlin ⁴Nihon University

Motivation

Problem: Solving polynomial systems is fundamental but hard.

- Worst-case complexity exponential in # variables
- Border/Gröbner bases are the standard tool
- Most computation is wasted on unsuccessful reductions

Our Solution: Train a Transformer oracle to predict which reductions will succeed \rightarrow up to 3.5 \times speedup with correctness guarantees.

Border Basis Algorithm (BBA)

Core Idea: Expand, then do Gaussian elimination.

Key Concepts:

- $\mathcal{L} = \{x^{\alpha} : \|\alpha\|_1 \le d\}$ computational universe (monomials up to degree d)
- $\mathscr{V} \subseteq \operatorname{span}(\mathscr{L})$ polynomial set with **pairwise distinct leading terms**
- $\mathcal{V}^+ = \{x_j v \mid v \in \mathcal{V}, j = 1, ..., n\}$ expansion candidates

Algorithm 1: L-Stable Span in BBA and OBBA
Input: Polynomials \mathcal{V}_0 , universe \mathcal{L} $i \leftarrow 0$;
while true do $\begin{array}{c} \mathcal{C}_i \leftarrow \mathcal{V}_i^+; \\ \mathcal{C}_i \leftarrow \text{Oracle}(\mathcal{L}, \mathcal{V}_i); \\ \mathcal{V}_{i+1} \leftarrow \text{BasisExtension}(\mathcal{V}_i, \mathcal{C}_i, \mathcal{L}); \\ \text{if } \mathcal{V}_{i+1} = \mathcal{V}_i \text{ then} \\ \text{break}; \\ i \leftarrow i+1; \end{array}$

Example: How BBA Works

The Transformer Oracle

Task: Given current state $(\mathcal{L}, \mathcal{V})$, predict which expansions extend the basis.

Oracle :
$$(\mathcal{L}, \mathcal{V}) \mapsto \mathcal{S} \subset \{x_1, \dots, x_n\} \times \mathcal{V}$$

Output: Set of pairs $\mathscr{S} = \{(x_{\ell}, v_m)\}$ where:

- $x_{\ell} \in \{x_1, \dots, x_n\}$ is a **variable** (expansion direction)
- $v_m = \operatorname{LT}(p_m)$ is a **leading term** identifying polynomial $p_m \in \mathscr{V}$
- Each pair specifies candidate $x_{\ell} \cdot p_m \in \mathscr{V}^+$ to reduce

Architecture: Standard encoder-decoder Transformer, 6 layers, 8 heads.

Training: Supervised learning from BBA execution traces—record which expansions actually extended the basis at each iteration.

Correctness Guarantee: After k oracle calls, fall back to full BBA expansion \rightarrow algorithm always terminates with correct output.

Efficient Monomial Embedding

Challenge: Polynomial sequences have tens of thousands of tokens.

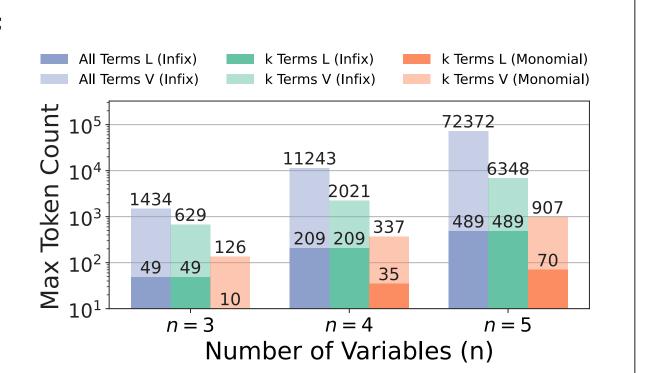
Standard infix:
$$L = \{1, x, y\}$$
, $V = [x + 2, y]$ becomes:

(C1,E0,E0,<sep>,C1,E1,E0,<sep>,C1,E0,E1,<supsep>,C1,E1,E0,+,C2,E0,E0,<sep>,C1,E0,E1,<eos>)

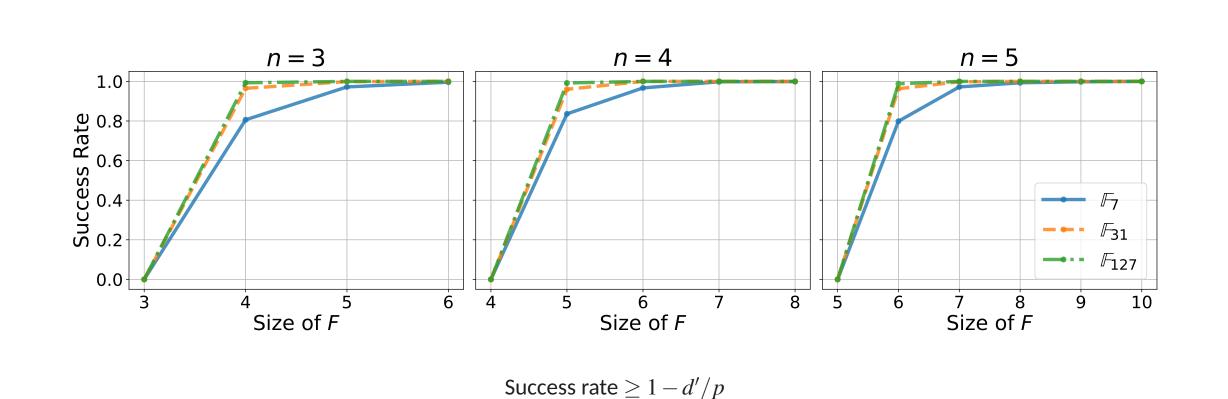
Ours: Embed each monomial as a single token:

$$\varphi_{\rm m}(t, \langle * \rangle) = \varphi_{\rm c}(c) + \varphi_{\rm e}(a) + \varphi_{\rm f}(\langle * \rangle)$$

Benefits: Tokens $\downarrow \mathcal{O}(n)$, memory $\downarrow \mathcal{O}(n^2)$



Dataset Generation



Challenge: Randomly sampling polynomials usually produces systems that do *not* have the necessary structure (i.e. generating a zero dimensional ideal).

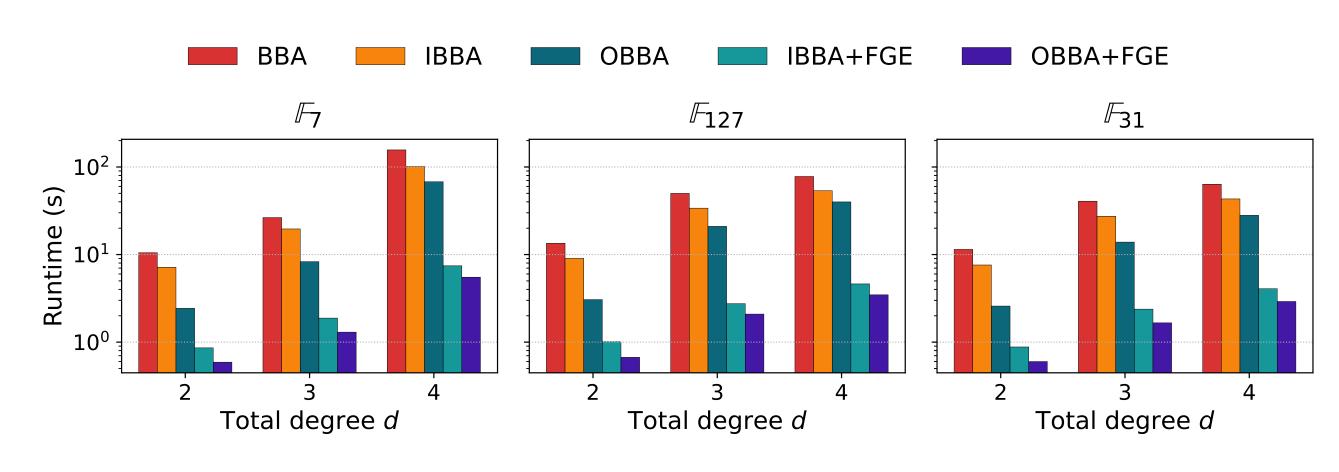
Solution: Sample border bases, transform backwards.

- 1. Sample order ideal \mathcal{O} , construct border basis G
- 2. Ideal-invariant transform: F = AG, |F| > n
- 3. Run BBA on F, collect pairs from last 5 expansions

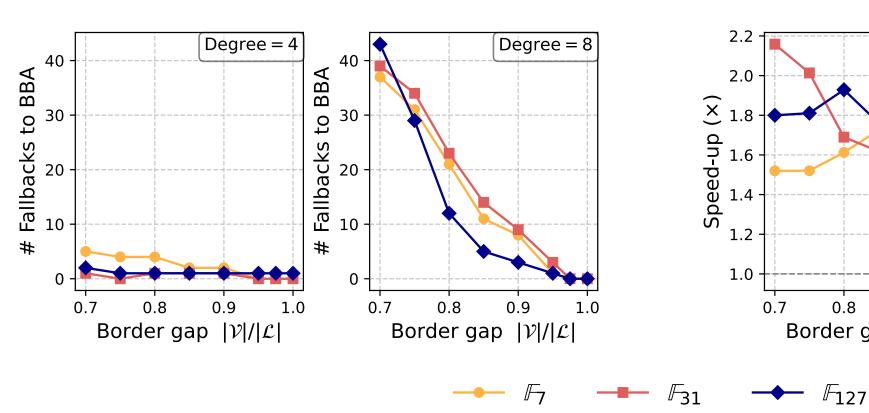
Result: 1M diverse samples per dataset.

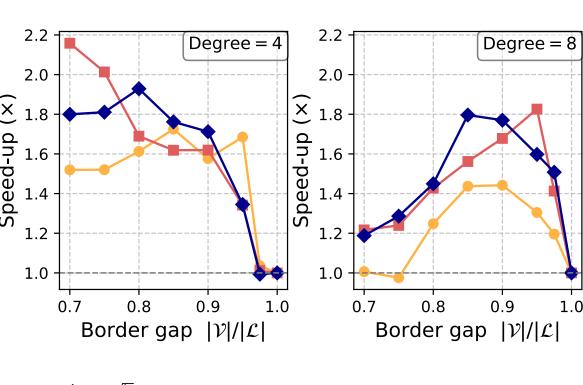
Strong Out-of-Distribution Generalization

Key result: Oracle trained on simple cases generalizes to much harder problems.



Note: Y-axis is log scale. Degree-4 systems are 10–100× harder than training data!





Speedup vs. relative border gap $\frac{|\mathscr{V}|}{|\mathscr{L}|}$ for n=4. Invoking oracle earlier \to more speedup but risk of fallback.

OOD Results: n = 5 Variables (\mathbb{F}_{31})

Training: degree $\leq 2 \rightarrow$ **Testing:** degree ≤ 4 (OOD)

	Baseline		Ours		
Deg	BBA	IBBA	OBBA	IBBA+FGE	OBBA+FGE
2	11.45	7.6s	2.6s	o.88s	0.60s
3	40.7s	27.45	13.95	2.45	1.7 s
4	136.75	97.8s	68.8s	7.4 s	5.6s

Highlighted rows: Out-of-distribution instances (not seen in training).

Degree-4 is 14× harder than degree-2 Yet OBBA+FGE still achieves 17× speedup over baseline!

Conclusion and Outlook

Summary:

- First deep-learning border basis algorithm with guarantees
- Diverse border basis sampling plus efficient $\mathscr{O}(n)$ monomial embedding
- Up to $3.5 \times$ speedup, strong OOD ability

Application: Sum-of-Squares (SOS) Programming (arXiv:2510.13444)

Next: Larger n, infinite fields, positive-dim. ideals

Code: github.com/HiroshiKERA/OracleBorderBasis

Input: $\mathscr{V} = \{x-1, x^2+y^2-1\}$, $\mathscr{L} = \{1, x, y, x^2, xy, y^2\}$ Step 1: Expand — Multiply each $v \in \mathscr{V}$ by each variable: $\mathscr{V}^+ = \{x(x-1), y(x-1), x(x^2+y^2-1), y(x^2+y^2-1)\}$ Step 2: Reduce (Gaussian elimination) — After reduction mod \mathscr{V} : $v(x-1) = x^2 - x \xrightarrow{\text{reduce}} y^2 + x - 1 \qquad \text{fextends } \mathscr{V}$ $v(x-1) = xy - y \qquad \text{fextends } \mathscr{V}$