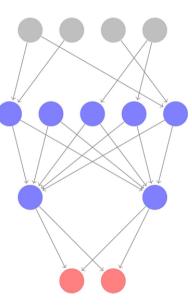


Sparse Model Soups

A Recipe for Improved Pruning via Model Averaging

12th International Conference on Learning Representations (ICLR24) Max Zimmer

October 2024



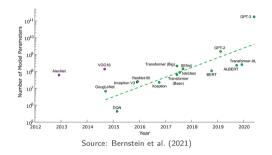
Results are joint work of...

Sebastian Pokutta Zuse Institute Berlin

1. Introduction

Why do we need sparsity?

- Neural Networks are exploding in size
- This yields several problems:
 - Efficiency: Long training/inference times
 - Storage: Not deployable on phones, ...
 - Costs: Costly energy demands
 - Training of Large Language Models can emit as much CO₂ as five cars in their lifetime (Strubell et al., 2019)
 - GPT-3 Training: Estimated cost of 4.6 million USD



- One potential solution: **Pruning** The removal of parameters from the network (LeCun et al., 1989; Han et al., 2015).
- Idea: introduce sparsity in the parameter tensors to reduce storage- and compute-demands

1. Introduction

How to decide what to prune?

Mathematical formulation: $\min_{\mathcal{W}} \mathcal{L}(\mathcal{W}, \mathcal{D})$ s.t. $\|\mathcal{W}\|_0 \leq k$. \rightarrow Intractable! Two different paradigms:

- Regularization: Force parameters towards zero throughout training (e.g., with penalties)
- Saliency criteria: Remove based on a heuristic, e.g., parameter magnitude.

A classical pruning approach:

Iterative Magnitude Pruning (IMP, Han et al., 2015);

Input: A pretrained network θ .

repeat

PRUNE a fraction of the lowest-magnitude weights;

RETRAIN the network for a bit;

until the desired sparsity is reached;

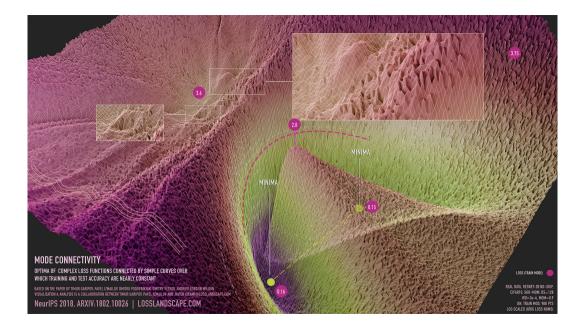
Given *m* models $\theta_1, \ldots, \theta_m$, can we construct a better model θ ?

Ensembles: Average the outputs of m models

- $\rightarrow\,$ Drastically improves generalization performance
- \rightarrow **Problem:** Increases the inference time by a factor of m

Parameter Averaging or Model Soups: Average the parameters of m models

- \rightarrow New model $\bar{\theta} = \sum_{i \in [m]} \lambda_i \theta_i$ is efficient to use
- → **Difficulty:** Models θ_i must reside in a linearly connected loss basin. Even averaging models trained with identical initialization but varying seeds degrades performance compared to individual models (Neyshabur et al., 2020).



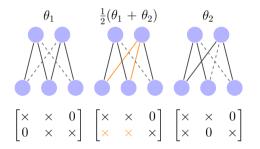
Can we get the benefits of both model averaging and sparsity?

- For ensembles: Easy! Just obtain multiple sparse models and average the outputs!
- But how do we find models that are both sparse and have averageable parameters?
- \rightarrow We have to resolve two problems! This is the goal of this work!

Note: Ensembles should be as diverse as possible, but what about model soups?

 $\rightarrow\,$ Model Soup candidates should be diverse enough, but not too diverse?

Averaging sparse models may destroy the sparsity pattern!



2. Combining Model Averaging and Sparsity

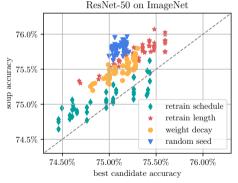
Problem 2: Finding averageable models

How to obtain models that are averageable?

Idea: Training two models from the same *pretrained* model shouldn't drive them too far apart.

Crucial observation: Pruning a pretrained model and retraining multiple copies with varied hyperparameters (e.g., batch ordering, weight decay) yields averageable models!





We obtain **sparse models that exhibit superior generalization** performance, **maintaining the sparsity pattern** of their pruned parent in their parameter average.

Idea: Average models after each prune-retrain cycle to ensure identical sparsity! \rightarrow Proposed algorithm: **Sparse Model Soups (SMS)**

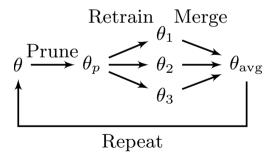


Figure: Sketch for a single phase, m = 3.

In each phase, SMS trains m models in parallel for k epochs each. **Suitable baselines:**

- IMP: Regular IMP without averaging, i.e., m = 1.
- IMP_{m×}: Extended IMP, where the IMP retraining duration is extended by a factor of *m*, resulting in *k* · *m* retraining epochs per prune-retrain cycle as as many overall epochs as SMS.
- IMP-RePrune: Regular IMP executed *m* times, averaging performed after the final phase, followed by repruning to address sparsity reduction after averaging.
- Best candidate: Best accuracy among all averaging candidates.
- Mean candidate: Mean accuracy of the averaging candidates.

ZUSE INSTITUTE BERLIN

3. Sparse Model Soups

Comparing SMS against suitable baselines (2)

Table: WideResNet-20 on CIFAR-100 and ResNet-50 on ImageNet: Test accuracies for target sparsities 98% (top) and 90% (bottom) given three prune-retrain cycles.

CIFAR-100 (98%)

	Spars	Sparsity 72.8% (Phase 1)			Sparsity 92.6% (Phase 2)			Sparsity 98.0% (Phase 3)		
Accuracy of	<i>m</i> = 3	m = 5	m = 10	<i>m</i> = 3	m = 5	m = 10	<i>m</i> = 3	m = 5	m = 10	
SMS	76.50 ± 0.16	76.59 ± 0.13	76.75 ± 0.28	75.55 ± 0.60	76.19 ± 0.37	76.21 ± 0.43	72.67 ±0.29	72.90 ± 0.64	73.05 ± 0.45	
best candidate	75.58 ± 0.19	75.71 ± 0.08	75.96 ± 0.13	74.51 ± 0.47	75.01 ± 0.74	75.00 ± 0.34	71.77 ± 0.04	71.77 ± 0.37	72.21 ± 0.02	
mean candidate	$75.37 \ \pm 0.12$	$75.58\ {\pm}0.03$	$75.55\ {\pm}0.26$	$74.32\ {\pm}0.40$	$74.71 \ \pm 0.48$	$74.70\ {\pm}0.42$	$71.41\ {\pm}0.09$	$71.61 \ \pm 0.40$	$71.66\ {\pm}0.19$	
IMP _{m×}	75.85 ±0.26	76.05 ± 0.00	75.76 ±0.24	74.09 ± 0.24	$74.19\ {\pm}0.44$	74.74 ±0.06	70.92 ± 0.07	70.31 ± 0.52	71.85 ± 0.15	
IMP-RePrune		— N/A —			— N/A —			65.53 ± 0.06	63.62 ± 0.90	
IMP	-							70.74 ±0.08		

ImageNet (90%)

	Sparsity 53.6% (Phase 1)			Sparsity 78.5% (Phase 2)			Sparsity 90.0% (Phase 3)		
Accuracy of	<i>m</i> = 3	m = 5	m = 10	<i>m</i> = 3	m = 5	m = 10	<i>m</i> = 3	m = 5	m = 10
SMS	76.74 ±0.20	76.89 ± 0.18	77.01 ± 0.05	76.04 ± 0.21	76.30 ± 0.13	76.49 ± 0.12	74.53 ± 0.04	74.82 ± 0.08	74.96 ± 0.16
best candidate	76.07 ± 0.01	76.07 ± 0.21	76.14 ± 0.18	$75.48\ {\pm}0.16$	$75.46 \ \pm 0.11$	$75.70\ {\pm}0.03$	$74.00 \ \pm 0.03$	$74.19\ \pm0.08$	74.25 ± 0.13
mean candidate	$75.99 \ \pm 0.04$	$75.95 \ \pm 0.14$	$75.96 \ \pm 0.08$	$75.40 \ \pm 0.11$	$75.42 \ \pm 0.10$	$75.55\ {\pm}0.05$	$73.94\ {\pm}0.03$	$74.11 \ \pm 0.11$	$74.13\ {\pm}0.12$
IMP _{m×}	76.25 ±0.08	76.21 ± 0.14	76.46 ±0.04	75.74 ±0.03	75.87 ±0.11	75.93 ±0.03	74.34 ±0.09	74.56 ±0.24	74.50 ±0.09
IMP-RePrune		— N/A —			— N/A —		72.97 ± 0.25	72.58 ± 0.01	72.08 ± 0.12
IMP	- 75.97 ±0.16 -			75.19 ±0.14			73.59 ±0.04		

- SMS effectively merges sparse models, maintaining the sparsity pattern and improving generalization and out-of-distribution (OOD) performance.
- Averaging after each prune-retrain cycle and starting from the averaged model significantly enhances the generalization of pruned models.
- SMS consistently outperforms traditional Iterative Magnitude Pruning (IMP) and its extended variants, showing up to 2% improvement in accuracy.
- SMS offers the benefits of parallelization and modularity, enabling practical application in large-scale pruning tasks without increasing inference complexity.

Thank you for your attention!