
Sparse Model Soups
A Recipe for Improved Pruning via Model Averaging

12th International Conference on Learning Representations (ICLR24)
Max Zimmer
October 2024



Results are joint work of...

Max Zimmer
Zuse Institute Berlin

Christoph Spiegel
Zuse Institute Berlin

Sebastian Pokutta
Zuse Institute Berlin

mailto:zimmer@zib.de
mailto:spiegel@zib.de
mailto:pokutta@zib.de


1. Introduction

Why do we need sparsity?
• Neural Networks are exploding in size
• This yields several problems:

— Efficiency: Long training/inference times
— Storage: Not deployable on phones, ...
— Costs: Costly energy demands

◦ Training of Large Language Models can
emit as much CO2 as five cars in their
lifetime (Strubell et al., 2019)

◦ GPT-3 Training: Estimated cost of 4.6
million USD

Source: Bernstein et al. (2021)

• One potential solution: Pruning - The removal of parameters from the network
(LeCun et al., 1989; Han et al., 2015).

• Idea: introduce sparsity in the parameter tensors to reduce storage- and
compute-demands



1. Introduction

How to decide what to prune?
Mathematical formulation: minW L(W, D) s.t. ∥W∥0 ≤ k. → Intractable!
Two different paradigms:

• Regularization: Force parameters towards zero throughout training (e.g., with
penalties)

• Saliency criteria: Remove based on a heuristic, e.g., parameter magnitude.

A classical pruning approach:
Iterative Magnitude Pruning (IMP, Han et al., 2015);
Input: A pretrained network θ.
repeat

PRUNE a fraction of the lowest-magnitude weights;
RETRAIN the network for a bit;

until the desired sparsity is reached ;



1. Introduction

Leveraging multiple models for better performance

Given m models θ1, . . . , θm, can we construct a better model θ?

Ensembles: Average the outputs of m models
→ Drastically improves generalization performance
→ Problem: Increases the inference time by a factor of m

Parameter Averaging or Model Soups: Average the parameters of m models
→ New model θ̄ = ∑

i∈[m] λiθi is efficient to use
→ Difficulty: Models θi must reside in a linearly connected loss basin. Even

averaging models trained with identical initialization but varying seeds degrades
performance compared to individual models (Neyshabur et al., 2020).





1. Introduction

Motivation

Can we get the benefits of both model averaging and sparsity?

• For ensembles: Easy! Just obtain multiple sparse models and average the outputs!
• But how do we find models that are both sparse and have averageable parameters?
→ We have to resolve two problems! This is the goal of this work!

Note: Ensembles should be as diverse as possible, but what about model soups?
→ Model Soup candidates should be diverse enough, but not too diverse?



2. Combining Model Averaging and Sparsity

Problem 1: Averaging destroys sparsity

Averaging sparse models may destroy the sparsity pattern!

θ1
1
2(θ1 + θ2) θ2

[
× × 0
0 × ×

] [
× × 0
× × ×

] [
× × 0
× 0 ×

]



2. Combining Model Averaging and Sparsity

Problem 2: Finding averageable models

How to obtain models that are averageable?

Idea: Training two models from the same
pretrained model shouldn’t drive them
too far apart.

Crucial observation: Pruning a pretrained
model and retraining multiple copies with
varied hyperparameters (e.g., batch ordering,
weight decay) yields averageable models!

74.50% 75.00% 75.50% 76.00%

best candidate accuracy

74.5%

75.0%

75.5%

76.0%

so
u

p
a
cc

u
ra

cy

ResNet-50 on ImageNet

retrain schedule

retrain length

weight decay

random seed

(Remark: Hyperparameters should be chosen reasonably.)



3. Sparse Model Soups

The recipe
We obtain sparse models that exhibit superior generalization performance,
maintaining the sparsity pattern of their pruned parent in their parameter average.

Idea: Average models after each prune-retrain cycle to ensure identical sparsity!
→ Proposed algorithm: Sparse Model Soups (SMS)

θ θp

θ1

θ2

θ3

θavg

Repeat

Prune

Retrain Merge

Figure: Sketch for a single phase, m = 3.



3. Sparse Model Soups

Comparing SMS against suitable baselines (1)

In each phase, SMS trains m models in parallel for k epochs each.
Suitable baselines:

• IMP: Regular IMP without averaging, i.e., m = 1.
• IMPm×: Extended IMP, where the IMP retraining duration is extended by a factor

of m, resulting in k · m retraining epochs per prune-retrain cycle as as many
overall epochs as SMS.

• IMP-RePrune: Regular IMP executed m times, averaging performed after the final
phase, followed by repruning to address sparsity reduction after averaging.

• Best candidate: Best accuracy among all averaging candidates.
• Mean candidate: Mean accuracy of the averaging candidates.



3. Sparse Model Soups

Comparing SMS against suitable baselines (2)
Table: WideResNet-20 on CIFAR-100 and ResNet-50 on ImageNet: Test accuracies for target
sparsities 98% (top) and 90% (bottom) given three prune-retrain cycles.
CIFAR-100 (98%)

Sparsity 72.8% (Phase 1) Sparsity 92.6% (Phase 2) Sparsity 98.0% (Phase 3)
Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10
SMS 76.50 ±0.16 76.59 ±0.13 76.75 ±0.28 75.55 ±0.60 76.19 ±0.37 76.21 ±0.43 72.67 ±0.29 72.90 ±0.64 73.05 ±0.45
best candidate 75.58 ±0.19 75.71 ±0.08 75.96 ±0.13 74.51 ±0.47 75.01 ±0.74 75.00 ±0.34 71.77 ±0.04 71.77 ±0.37 72.21 ±0.02
mean candidate 75.37 ±0.12 75.58 ±0.03 75.55 ±0.26 74.32 ±0.40 74.71 ±0.48 74.70 ±0.42 71.41 ±0.09 71.61 ±0.40 71.66 ±0.19

IMPm× 75.85 ±0.26 76.05 ±0.00 75.76 ±0.24 74.09 ±0.24 74.19 ±0.44 74.74 ±0.06 70.92 ±0.07 70.31 ±0.52 71.85 ±0.15
IMP-RePrune — N/A — — N/A — 68.19 ±0.44 65.53 ±0.06 63.62 ±0.90
IMP — 75.54 ±0.41 — — 74.09 ±0.13 — — 70.74 ±0.08 —

ImageNet (90%)
Sparsity 53.6% (Phase 1) Sparsity 78.5% (Phase 2) Sparsity 90.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10
SMS 76.74 ±0.20 76.89 ±0.18 77.01 ±0.05 76.04 ±0.21 76.30 ±0.13 76.49 ±0.12 74.53 ±0.04 74.82 ±0.08 74.96 ±0.16
best candidate 76.07 ±0.01 76.07 ±0.21 76.14 ±0.18 75.48 ±0.16 75.46 ±0.11 75.70 ±0.03 74.00 ±0.03 74.19 ±0.08 74.25 ±0.13
mean candidate 75.99 ±0.04 75.95 ±0.14 75.96 ±0.08 75.40 ±0.11 75.42 ±0.10 75.55 ±0.05 73.94 ±0.03 74.11 ±0.11 74.13 ±0.12

IMPm× 76.25 ±0.08 76.21 ±0.14 76.46 ±0.04 75.74 ±0.03 75.87 ±0.11 75.93 ±0.03 74.34 ±0.09 74.56 ±0.24 74.50 ±0.09
IMP-RePrune — N/A — — N/A — 72.97 ±0.25 72.58 ±0.01 72.08 ±0.12
IMP — 75.97 ±0.16 — — 75.19 ±0.14 — — 73.59 ±0.04 —



4. Conclusion

Conclusion

• SMS effectively merges sparse models, maintaining the sparsity pattern and
improving generalization and out-of-distribution (OOD) performance.

• Averaging after each prune-retrain cycle and starting from the averaged model
significantly enhances the generalization of pruned models.

• SMS consistently outperforms traditional Iterative Magnitude Pruning (IMP) and
its extended variants, showing up to 2% improvement in accuracy.

• SMS offers the benefits of parallelization and modularity, enabling practical
application in large-scale pruning tasks without increasing inference complexity.



Thank you for your attention!


	Introduction
	Combining Model Averaging and Sparsity
	Sparse Model Soups
	Conclusion

