
Sparsity in Neural Networks
Or: How I Learned To Stop Worrying and Love Retraining

Published in 11th International Conference on Learning Representations
(ICLR23)
Max Zimmer - AI4Forest Kick-Off Meeting - Paris
November 2023



Results are joint work of...

Max Zimmer
Zuse Institute Berlin

Christoph Spiegel
Zuse Institute Berlin

Sebastian Pokutta
Zuse Institute Berlin

Research partially supported by the DFG Cluster of Excellence MATH+.

mailto:zimmer@zib.de
mailto:spiegel@zib.de
mailto:pokutta@zib.de


1. Introduction

Why do we need sparsity?
• Neural Networks are exploding in size
• This yields several problems:

— Efficiency: Longer training/inference times
— Storage: Not deployable on phones, IOT, ...
— Costs: Costly energy demands

◦ Training of Large Language Models can emit
as much CO2 as five cars in their lifetime
(Strubell et al., 2019)

◦ GPT-3 Training: Estimated cost of 4.6
million USD

Source: Bernstein et al. (2021)

• One potential solution: Pruning - The removal of parameters of the network
(LeCun et al., 1989; Han et al., 2015).

• Idea: introduce sparsity in the parameter tensors to reduce storage- and
compute-demands



1. Introduction

How to decide what to prune?
Mathematical formulation: minW L(W, D) s.t. ∥W∥0 ≤ k. → Intractable!
Two different paradigms:

• Regularization: Force parameters towards zero throughout training (e.g. with
penalities)

• Saliency criteria: Remove based on a heuristic, e.g. parameter magnitude.
A classical unstructured pruning approach:
Iterative Magnitude Pruning (IMP, Han et al., 2015);
Input: A pretrained network.
repeat

PRUNE a fraction of the lowest-magnitude weights;
RETRAIN the network for Trt epochs (How?);

until the desired sparsity is reached ;



1. Introduction

Different sparsification paradigms

Problem: Pruning may improve generalization, but typically degrades model
performance.

• Different paradigms to find well-performing sparse models:

Pruning-instable approaches

• IMP-like three-stage approach:
Pretrain, iteratively prune & retrain.

• Model performance drops when
removing weights.

→ Retraining required.

Pruning-stable approaches

• Require compute-intense
regularization towards sparsity.

• Ultimate ‘hard’ pruning results in
negligible performance degradation.

→ No retraining required.



1. Introduction

Disadvantages of IMP and our contribution

(Claimed) Disadvantages compared to pruning-stable approaches:
1. IMP is inferior to more complex algorithms that ‘learn’ the sparsity pattern

throughout training and do not employ ‘hard’ pruning.
2. IMP is inefficient since it requires many retraining epochs. Pruning-stable

approaches find a sparse solution throughout regular training.

Central idea of our work: These disadvantages fall apart when retraining properly.



2. Retraining as budgeted training

Existing retraining schedules
Let (ηt)t≤T be the pretraining schedule and Trt the number of retraining epochs.

• FT (Han et al., 2015): Use the last learning rate ηT for all
epochs.

• LRW (Renda et al., 2020): Rewind the learning rate to
epoch T − Trt .

• SLR (Le and Hua, 2021): Schedule proportionally identical
to original one.

• CLR (Le and Hua, 2021): 1-cycle cosine decay schedule.

0 10 20 30 40 50 60

retraining epochs

0.00

0.02

0.04

0.06

0.08

0.10

le
ar

n
in

g
ra

te

FT

LRW

SLR

CLR

LLR

These developments and improvements closely resemble the findings of Li et al. (2020)
regarding optimal schedules in the budgeted setting.



2. Retraining as budgeted training

Our proposals:
• Linear Learning Rate Restarting (LLR): Linear decay from η1 to zero after a

short warm-up phase.
• Adaptive Linear Learning Rate Restarting (ALLR): Linear decay from d · η1,

where discounting factor d = max(d1, d2) ∈ [0, 1] accounts for both the
pruning-induced performance drop by d1 = ∥θ − θp∥2/(∥θ∥2 ·

√
s) and the

retraining time by d2 = Trt/T , where s is the target sparsity.
Table: ResNet-50 on ImageNet: Test accuracy comparison of the different learning rate
translation schemes for One Shot IMP for retrain times of 2.22% (2 epochs), 5.55% (5 epochs)
and 11.11% (10 epochs) of the initial training budget of 90 epochs.

Model sparsity 70% Model sparsity 80% Model sparsity 90%
Budget: 2.22% 5.55% 11.11% 2.22% 5.55% 11.11% 2.22% 5.55% 11.11%
FT 73.51 ±0.04 73.98 ±0.04 74.44 ±0.11 70.45 ±0.20 71.81 ±0.11 72.68 ±0.07 56.75 ±0.01 61.60 ±0.30 64.61 ±0.21
LRW 73.50 ±0.04 73.99 ±0.04 74.45 ±0.11 70.45 ±0.20 71.82 ±0.12 72.67 ±0.07 56.75 ±0.01 61.61 ±0.30 64.60 ±0.23
SLR 70.93 ±0.01 72.58 ±0.03 73.69 ±0.11 70.48 ±0.04 72.37 ±0.02 73.44 ±0.18 67.19 ±0.23 69.45 ±0.01 70.80 ±0.09
CLR 72.22 ±0.09 73.58 ±0.08 74.49 ±0.04 71.96 ±0.09 73.30 ±0.08 74.24 ±0.08 68.72 ±0.06 70.60 ±0.15 71.51 ±0.13
LLR (ours) 72.39 ±0.13 73.65 ±0.05 74.34 ±0.02 72.07 ±0.09 73.41 ±0.05 74.23 ±0.10 68.90 ±0.05 70.48 ±0.01 71.53 ±0.09
ALLR (ours) 73.69 ±0.03 74.37 ±0.05 74.89 ±0.04 72.96 ±0.15 74.02 ±0.08 74.71 ±0.04 69.56 ±0.07 71.19 ±0.01 71.99 ±0.07



3. Budgeted IMP in comparison to pruning-stable approaches

Budgeted IMP (BIMP)
Given a training budget of T epochs, we propose Budgeted IMP (BIMP), which:

• trains the network from scratch for some T0 < T epochs using a linear schedule,
• applies IMP with ALLR on the output for the remaining T − T0 epochs.

BIMP maintains the key characteristics of IMP, i.e.,
• we prune ‘hard’ and do not allow weights to recover, and
• we do not impose any additional implicit bias during training.
Table: ResNet-50 on ImageNet: Comparison between BIMP and pruning-stable methods.

ImageNet
Model sparsity 70% Model sparsity 80% Model sparsity 90%

Method # img/s Accuracy Speedup Sparsity Accuracy Speedup Sparsity Accuracy Speedup Sparsity
BIMP (ours) 1454 75.62 ±0.02 2 ±0.0 70.00 ±0.00 75.08 ±0.16 3 ±0.0 80.00 ±0.00 73.53 ±0.05 6 ±0.0 90.00 ±0.00
GMP 1425 74.62 ±0.08 2 ±0.0 70.00 ±0.00 74.19 ±0.17 4 ±0.0 80.00 ±0.00 72.80 ±0.03 7 ±0.1 90.00 ±0.00
GSM 1349 73.69 ±0.70 2 ±0.1 70.00 ±0.00 72.75 ±0.62 4 ±0.3 80.00 ±0.00 70.08 ±0.94 9 ±0.8 90.00 ±0.00
DPF 1456 75.59 ±0.07 2 ±0.0 70.00 ±0.00 75.30 ±0.02 3 ±0.0 80.00 ±0.00 74.05 ±0.05 6 ±0.0 90.00 ±0.00
DNW 530 75.60 ±0.01 2 ±0.0 70.00 ±0.00 75.27 ±0.01 3 ±0.0 80.00 ±0.00 74.29 ±0.03 5 ±0.1 90.00 ±0.00
LC 1436 75.03 ±0.20 2 ±0.0 70.00 ±0.00 73.87 ±0.62 3 ±0.0 80.00 ±0.00 67.57 ±2.71 5 ±0.0 90.00 ±0.00
STR 1396 70.66 ±0.13 3 ±0.0 75.34 ±0.01 70.70 ±0.13 4 ±0.0 80.93 ±0.00 70.13 ±0.01 8 ±0.0 90.00 ±0.00
DST 1219 74.63 ±0.22 4 ±0.1 70.00 ±0.00 73.16 ±0.11 6 ±0.1 80.00 ±0.00 71.35 ±0.09 13 ±0.4 90.00 ±0.00



4. Conclusion

Conclusion

• Retraining is fundamentally about optimization; the learning rate is key.
• ALLR significantly improves upon previous approaches, often by a large margin.
• If proper care is taken of the learning rate, pruning-instable approaches such as

(B)IMP are strong contenders, despite employing hard and heuristic pruning.
• Contrary to the existing narrative, retraining is not inherently bad.
• The focus should lie on understanding and improving the existing (simple)

algorithms, instead of proposing more and more convoluted, compute-intense and
hard-to-tune approaches.



Thank you for your attention!


	Introduction
	Retraining as budgeted training
	Budgeted IMP in comparison to pruning-stable approaches
	Conclusion

